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Abstract—Even though there exists a lot of different
transmission techniques, the capacity of the general relay
channel is still unknown. This paper shows that combining
decode-and-forward (DF) with compress-and-forward (CF)
can have a performance advantage over each of the two
techniques individually. Combining the two techniques goes
back to the celebrated work of Cover and El-Gamal [1],
more specifically, they gave an achievable rate for the DF-
CF combination. In this paper, we re-derive the achievable
rate of combining DF with CF in the full-duplex discrete
memoryless relay channel. We derive the achievable rate
in the AWGN relay channel as well as the constrained
constellation AWGN relay channel. We show that even
though in the AWGN channel, DF-CF combination does
not provide any advantage, under constrained constellation,
combining the two techniques has an advantage.

I. INTRODUCTION

Shortly after the introduction of the relay channel by
Van Der Meulen [2], Cover and El-Gamal [1] intro-
duced the main transmission techniques of cooperation,
namely, decode-and-forward (DF) and compress-and-
forward (CF). More details about the transmission over
the relay channel can be found in [3], [4]

Each of the two techniques, DF and CF has its
own advantage and imposed constraints. For example,
the decode-and-forward achieves the capacity of the
degraded relay channel but it enforces the source to
transmit with a rate that is decodable at the relay, a
restriction that causes DF to fail when the source-relay
channel is very weak. Compress-and-forward performs
very-well when the relay-destination channel is very
strong [5]. However, it only sends a description of the
received signal using Wyner-Ziv coding [6] but the relay
is not allowed to attempt noise cancellation.

The constraints of the two techniques act in an op-
posite manner. In order to overcome the restriction of
each technique, the combination of the two of them
in decode-compress-and-forward (DCF) transmission is
studied. We first re-derive the achievable rate of DCF
which was first presented by Cover and El-Gamal in [1,
Theorem 7]. Second, we derive the achievable rate in
the AWGN relay channel and show that DCF does
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not provide any performance gain over the best of DF
and CF. Finally, we present the achievable rate under a
constrained constellation AWGN relay channel, showing
that DCF provides performance gain over DF and CF.

II. DECODE, COMPRESS-AND-FORWARD TECHNIQUE

In this Section, we re-derive Theorem 7 [1] for the
discrete memoryless relay channel and obtain the achiev-
able rate for the AWGN relay channel as well as the
constellation constrained AWGN relay channel.

A. Discrete Memoryless Full-Duplex Relay

For the discrete memory-less relay channel, the trans-
mission technique is summarized in Fig. 1 over four
transmission blocks. In each transmission block, the
relay sends a compress-and-forward component superim-
posed on a decode-and-forward component, whereas the
source sends a compress-and-forward component that is
superimposed on new information to be sent to the relay
which is superimposed on the assistance that the source
provides to the relay transmission.

Codebook generation at the relay node: 2𝑛𝑅2𝑑

codewords are generated at the relay node indepen-
dently and identically distributed (i.i.d.) according to
a distribution 𝑃𝑈2𝑑

(𝑢2𝑑) =
∏𝑛

𝑖=1 𝑃𝑈2𝑑𝑖
(𝑢2𝑑𝑖) where

𝑈2𝑑𝑖 is the symbol number 𝑖 in the codeword 𝑈2𝑑.
For every codeword 𝑈2𝑑, a codebook of 2𝑛𝑅2𝑐 code-
words are generated i.i.d. according to a distribution
𝑃𝑈2𝑐∣𝑈2𝑑

(𝑢2𝑐∣𝑢2𝑑) =
∏𝑛

𝑖=1 𝑃𝑈2𝑐𝑖∣𝑈2𝑑
(𝑢2𝑐𝑖∣𝑢2𝑑).

Codebook generation at the source node: For ev-
ery codeword 𝑈2𝑑, a codebook of size 2𝑛𝑅2𝑑 is gen-
erated i.i.d. with a distribution 𝑃𝑈1𝑑∣𝑈2𝑑

(𝑢1𝑑∣𝑢2𝑑) =∏𝑛
𝑖=1 𝑃𝑈1𝑑𝑖∣𝑈2𝑑

(𝑢1𝑑𝑖∣𝑢2𝑑). For every 𝑈1𝑑, a codebook
of size 2𝑛𝑅1𝑐 codewords is i.i.d. generated with a distri-
bution 𝑃𝑈1𝑐∣𝑈1𝑑,𝑈2𝑑

(𝑢1𝑐∣, 𝑢1𝑑, 𝑢2𝑑).
The source node: In block 𝑡, the source node splits

the message 𝑊 (𝑡) into messages 𝑊
(𝑡)
𝑑 for decode-

and-forward transmission and 𝑊
(𝑡)
𝑐 for compress-and-

forward transmission. Subsequently, the source sends
the codeword 𝑋1(𝑊

(𝑡)
𝑑 ,𝑊

(𝑡−1)
𝑑 ,𝑊

(𝑡)
𝑐 ) where 𝑊

(𝑡−1)
𝑑

is the decode-and-forward which is assumed to be per-
fectly decoded at the relay during transmission block
𝑡 − 1. In the first transmission block, the source sends
𝑋1(𝑊

(1)
𝑑 , 1,𝑊

(𝑡)
𝑐 ).978-1-5386-3531-5/17/$31.00 c⃝ 2017 IEEE
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Fig. 1. Decode-Compress and Forward transmission over four transmission blocks.

The relay node: In transmission block 𝑡 − 1, the
relay receives the signal 𝑌

(𝑡−1)
2 . Subsequently, it de-

codes the message 𝑊
(𝑡−1)
𝑑 using its received signal

𝑌
(𝑡−1)
2 and 𝑊

(𝑡−2)
𝑑 which is assumed to be successfully

decoded during transmission block 𝑡 − 2. Please note
that this decoding is performed while treating 𝑊

(𝑡−1)
𝑐

as noise. After decoding 𝑊
(𝑡)
𝑑 , the relay removes the

effect of 𝑊 (𝑡−1)
𝑑 and 𝑊

(𝑡−2)
𝑑 from 𝑌

(𝑡−1)
2 and quantizes

the resulting signal to generate 𝑌
(𝑡)
2 . In transmission

block 𝑡, the relay receives 𝑌
(𝑡)
2 and similarly decodes

𝑊 𝑡
𝑑 while treating 𝑊

(𝑡)
𝑐 as noise. In the transmission

phase, in block 𝑡, the relay generates a codeword
𝑈2𝑑(𝑊

(𝑡)
𝑑 ) and conditionally on 𝑈2𝑑, generates a code-

word 𝑋
(𝑡)
2 (𝑊

(𝑡)
𝑑 , 𝑌

(𝑡)
2 ) to be transmitted.

The destination node: In every block 𝑡, the des-
tination receives 𝑌

(𝑡)
3 . The destination uses backward

decoding where it waits until the last transmission block
𝐵. In the last transmission block, destination receives
𝑦
(𝐵)
3 which depends only on 𝑊

(𝐵)
𝑑 and 𝑊

(𝐵)
𝑐 and free

of interference from any other message. The destination
uses 𝑦(𝐵)

3 to decode 𝑊
(𝐵)
𝑑 while treating 𝑊

(𝐵)
𝑐 as noise.

Subsequently, the destination removes the effect of 𝑊 (𝐵)
3

from 𝑌
(𝐵)
3 and 𝑦

(𝐵−1)
3 and use them jointly to decode

𝑊
(𝐵)
𝑐 and then decode 𝑊

(𝐵−1)
𝑑 . This process continues

until the destination decodes all the messages.
Achievable Rate The source-relay transmission

should be with rates that allow the relay node to decode
the message 𝑊

(𝑡)
𝑑 assuming that 𝑊

(𝑡−1)
𝑑 is decoded

correctly at the relay during block 𝑡 − 1. In order for
this to be satisfied, the rate 𝑅1𝑑 should be

𝑅1𝑑 ≤ 𝐼(𝑈1𝑑;𝑌2∣𝑈2𝑑) (1)

The message 𝑊𝑑 is to be sent using decode-and-
forward transmission, and hence, using the received
signal at the destination 𝑌3, the destination should be
able to decode 𝑊𝑑. Therefore, similar to the decode-and-
forward analysis, the rate 𝑅𝑑 should satisfy the following
inequality

𝑅𝑑 ≤ 𝐼(𝑈1𝑑;𝑌3∣𝑈2𝑑) + 𝐼(𝑈2𝑑;𝑌3)

= 𝐼(𝑈1𝑑, 𝑈2𝑑;𝑌3) (2)

At this point, we consider that the destination knows
the message that corresponds to the decode-and-forward
part. For the compress-and-forward part, the relay quan-
tizes the received signal 𝑌2 after decoding 𝑈1𝑑 to obtain
a description 𝑌2 using a Wyner-Ziv coding approach [6].
According to Shannon’s rate-distortion theory [7, Chap-
ter 13], the rate of the quantization codebook 𝑌2 should
be upper bounded by

𝑅𝑄(𝐷) ≤ 𝐼(𝑌2;𝑌2∣𝑋2, 𝑈1𝑑) (3)

The relay sends this quantized signal superimposed on
𝑈2𝑑 to the destination. The destination should be able to
decode 𝑌2, which requires the quantization rate to satisfy

𝑅𝑄(𝐷) ≤ 𝐼(𝑋2;𝑌3∣𝑈2𝑑) (4)

The destination now decodes the message correspond-
ing to the compress-and-forward transmission 𝑊𝑐 in a
regular manner, and hence, for successful decoding, the
rate 𝑅1𝑐 should satisfy the following inequality

𝑅1𝑐 ≤ 𝐼(𝑋1;𝑌2, 𝑌3∣𝑋2, 𝑈1𝑑) (5)

The total transmission rate is then 𝑅 = 𝑅𝑑+𝑅𝑐. This
rate is a function of the distributions of the variables
involved in the bounds of 𝑅𝑑 and 𝑅𝑐. Therefore, by
combining these bounds we reach to the following
theorem

The achievable rate is then given by the following
Theorem:

Theorem 1: The achievable rate of the decode-
compress and forward is given by

𝑅 ≤ min
{
𝐼(𝑈1𝑑;𝑌2∣𝑈2𝑑), 𝐼(𝑈1𝑑, 𝑈2𝑑;𝑌3)

}
+ 𝐼(𝑋1;𝑌2, 𝑌3∣𝑋2, 𝑈1𝑑) (6)

subject to

𝐼(𝑌2;𝑌2∣𝑋2, 𝑈1𝑑) ≤ 𝐼(𝑋2;𝑌3)− 𝐼(𝑈2𝑑;𝑌3) (7)

where

𝑃 (𝑦3, 𝑦2, 𝑦2, 𝑢1, 𝑢2, 𝑥1, 𝑥2)

=𝑃 (𝑢2)𝑃 (𝑢1𝑑∣𝑢2𝑑)𝑃 (𝑥1∣𝑢1)𝑃 (𝑥2∣𝑢2)𝑃 (𝑦2∣𝑥1).

𝑃 (𝑦2∣𝑢1, 𝑥2, 𝑦2)𝑝(𝑦3∣𝑥1, 𝑥2) (8)



B. AWGN Full-Duplex Relay

Assume that all the variables in the previous Section
are Gaussian variables 1 while the source and relay have
an average power constrained by 𝑃1 and 𝑃2 respectively.
The DCF transmission in the AWGN relay channel is
described in Fig. 2 where the source and relay signals
are given by

𝑋1 = 𝑈1𝑑 + 𝛽𝑈2𝑑 + 𝑈1𝑐 (9)

𝑋2 = 𝑈2𝑑 + 𝑈2𝑐 (10)

respectively.
Each of the codewords 𝑈1𝑑, 𝑈2𝑑, 𝑈1𝑐 and 𝑈2𝑐 are

normally distributed. The term 𝛽𝑈2𝑑 represents the as-
sistance that the source provides to the relay destination
transmission. This assistance depends on the correlation
between 𝑈1𝑑 + 𝛽𝑈2𝑑 and 𝑈2𝑑 which is denoted by 𝜌.

Remark 1: In decode-and-forward AWGN relay chan-
nel, the design variable that should be optimized to
maximize the transmission rate is the correlation between
the source and the relay transmissions. Whereas in
compress-and-forward, once the source and relay signals
are set to be normally distributed with variances equal
to the source power and the relay power respectively,
the transmission rate is obtained. Sitting the codewords
to be normally distributed leaves the room for a lot of
parameters to be optimized. These parameters are basi-
cally the power allocation of each component codeword
at the source and the relay. For this reason, we fix the
power of two signals, 𝑈1𝑑 and 𝑈1𝑐 which are the decode-
and-forward the compress-and-forward components at
the source respectively. In this way, the power of all
the other signals can be obtain as a function of the
power of 𝑈1𝑑 and 𝑈1𝑐 and the power constraint at the
source and relay nodes. The design variable of the rate
maximization problem becomes the power of 𝑈1𝑑, 𝑈1𝑐

and the correlation 𝜌, and hence, the maximum rate can
be obtained using exhaustive search over all possible
power values of 𝑈1𝑑 and 𝑈1𝑐 and the correlation 𝜌.

Assuming that the power of 𝑈1𝑑 is 𝑃1𝑑 and the power
of 𝑈1𝑐 is 𝑃1𝑐, the power of 𝑈2𝑑 is then given by

𝑃2𝑑 =
𝑃1 − 𝑃1𝑑 − 𝑃1𝑐

𝛽2
(11)

and the power of 𝑈2𝑐 is

𝑃2𝑐 = 𝑃2 − 𝑃2𝑑 = 𝑃2 − 𝑃1 − 𝑃1𝑑 − 𝑃1𝑐

𝛽2
(12)

where

𝜌 =
𝐸[(𝑈1𝑑 + 𝛽𝑈2𝑑)𝑈2𝑑]√

(𝑃1𝑑 + 𝛽2𝑃2𝑑)𝑃2𝑑

(13)

𝛽 =

√
𝜌2𝑃1𝑑𝑃2𝑑

𝑃 2
2𝑑(1− 𝜌2)

(14)

1Gaussian random variables are not necessarily optimal, therefore,
the achievable rate is only a lower bound

Now, the signals 𝑌2, 𝑌2 and 𝑌3 are given by

𝑌2 = 𝐻12𝑋1 + 𝑛2 (15)

𝑌2 = 𝑌2 + 𝑛̂ (16)

𝑌3 = 𝐻13𝑋1 +𝐻23𝑋2 + 𝑛3 (17)

where 𝑛2, 𝑛3 and 𝑛̂ are zero mean Gaussian noise with
variance 𝜎2

2 , 𝜎
2
3 and 𝑁̂ respectively.

Based on the previous characterization for each of
the distributions of the variables involved in calculating
the transmission rate, the achievable rate for the AWGN
relay channel is given by the following theorem.

Theorem 2: The achievable rate of decode-compress
and forward for the AWGN relay channel with all
codewords normally distributed is given by

𝑅 ≤ min

{
1

2
log

(
1 +

∣𝐻12∣2𝑃1𝑑

∣𝐻12∣2𝑃1𝑐 + 𝜎2
2

)
,

1

2
log

(
1 +

(𝑃1𝑑 + 𝛽2𝑃2𝑐)∣𝐻13∣2
𝜎2
3

+
𝑃2𝑑∣𝐻23∣2

𝜎2
3

+ 2𝜌

√
(𝑃1𝑑 + 𝛽2𝑃2)𝑃2𝑑∣𝐻13∣2∣𝐻23∣2

𝜎4
3

)}

+
1

2
log

[(
(∣𝐻12∣2𝑃1𝑐 + 𝜎2

3 + 𝑁̂)(∣𝐻13∣2𝑃1𝑐 + 𝜎2
3)

− (∣𝐻12∣2∣𝐻13∣2)𝑃 2
1𝑐

)
/(𝜎2

3 + 𝑁̂)𝜎2
3

]
(18)

where

𝑁̂ =
(∣𝐻12∣2𝑃1𝑐 + 𝜎2

2)(∣𝐻13∣2(𝑃1𝑑 + 𝑃1𝑐) + 𝜎2
2)

∣𝐻23∣2𝑃2𝑐
(19)

Proof: See Appendix A.
In order to see the performance of DCF approach,

we consider the same model that is considered in [8],
namely, the source, relay and destination are all consid-
ered to be on a line. The source and destination locations
are fixed while the relay is moving. For simplicity, only
a path-loss model is considered at which the channel co-
efficient 𝐻𝑖𝑗 = 1/𝑑𝛼𝑖𝑗 where 𝑑𝑖𝑗 is the distance between
node 𝑖 and node 𝑗 and 𝛼 is the path-loss coefficient. The
distance between the source and the destination is fixed
to 𝑑13 = 1 while the distances 𝑑12 and 𝑑23 depend on the
relay location where 𝑑23 = 1− 𝑑12. In Fig. 3, we draw
the achievable rate of different transmission technique
as a function of the distance between the source and the
relay 𝑑12 where negative values of 𝑑12 means that the
relay is in the side of the source that is far from the
destination and positive values means that the relay is
between the source and destination.

C. Constellation-Constrained Full-Duplex relay

For the discrete input AWGN relay channel, the rate in
Theorem 1 can be obtained via numerical integrations.
The optimizing distribution may require an exhaustive
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Fig. 2. Decode-compress and forward transmission for the AWGN full-duplex relay channel over four blocks.
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Fig. 3. The achievable rates in the AWGN full-duplex relay channel.

search. As shown in many point-to-point and multi-user
scenarios [9], [10], when the constellation becomes large
enough, the achievable rate under a constrained constel-
lation becomes very close to the Gaussian input rate.
However, the main difficulty comes from the restriction
in (7) which is now even harder to satisfy since the
mutual information 𝐼(𝑋2;𝑌3) is no longer equal to

1

2
log

(
1 +

∣𝐻23∣2𝑃2

𝑁3

)

and is limited by the cardinality of the input size ∣𝑋2∣.
The exact value of the constellation constrained capac-
ity [11] is

𝐼(𝑋2;𝑌3) =max
𝑃𝑋2

∑
𝑋2

𝑃𝑋2
(𝑥2)

∫
𝑦3

𝑃𝑌3∣𝑋2
(𝑦3∣𝑥2) log

(
𝑃𝑌3∣𝑋2

(𝑦3∣𝑥2)

𝑃𝑌3
(𝑦3)

)
𝑑𝑦3

(20)

A very accurate approximation for 𝐼(𝑋2;𝑌3) under con-
strained constellation can be obtained using the Blahut-
Arimoto algorithm [12], [13].

By finding the value of 𝐼(𝑋2;𝑌3), one can find the
achievable rate of compress-and-forward and DCF. In

d
-1 -0.5 0 0.5 1

R
at

e 
[b

it/
ch

an
ne

l u
se

]
1.6

1.8

2

2.2

2.4

2.6

2.8

3

Upper Bound
DF
CF
DCF

Fig. 4. The achievable rates in the AWGN relay channel under a
16-PAM at the source and 4-PAM at the relay.

the following we give an upper bound on the achievable
rate of DCF under discrete relay-destination input 𝒳2.
The upper bound is based on

𝐼(𝑋2;𝑌3) ≤ min

{
∣𝑋2∣, log

(
1 +

∣𝐻23∣2𝑃2

𝜎2
3

)}
(21)

Therefore, the constraint in (7) becomes

𝐼(𝑌2;𝑌2∣𝑋2, 𝑈1𝑑) ≤min

{
∣𝑋2∣, log2

(
1 +

∣𝐻23∣2𝑃2

𝜎2
3

)}

− 𝐼(𝑈2𝑑;𝑌3) (22)

Via an exhaustive search for the optimal input dis-
tributions that satisfy (22), the achievable rate can be
obtained. In a similar manner to the previous Section,
we show the achievable rate of different strategies under
a constrained constellation in Fig. 4.

An intuitive explanation for this observation is as
follows: For a 4-PAM constellation and a weak source-
relay channel, DF enforces the source to transmit with
a small enough rate for the relay to be able to decode
both of the bits. CF sends a description of the received
signal after quantizing it using only two bits. DCF on
the other hand, decode the most reliable bit and sends a
description of the least reliable bit.



Remark 2: Compress-and-forward works well when
the source relay channel is weak but the relay destination
channel is very strong that it can send a very precise
quantized version of 𝑌2. However, when the relay is
constellation constrained, even if the quality of the relay-
destination link is extremely good, the relay cannot send
a precise description of 𝑌2.

APPENDIX A
ACHIEVABLE RATE OF DCF IN THE AWGN RELAY

First we start by obtaining the optimal value of 𝑁̂ . In
the AWGN relay channel with all codewords normally
distributed, the compress-and-forward constraint in (7)
becomes

1

2
log

(
1 +

∣𝐻12∣2𝑃1𝑐 + 𝜎2
2

𝑁̂

)
≤ 1

2
log

(
1 +

∣𝐻23∣2𝑃2𝑐

∣𝐻13∣2(𝑃1𝑑 + 𝑃1𝑐) + 𝜎2
3

)
(23)

The following value 𝑁̂ is the value that satisfies (23)
with equality [14], [15], and hence,

𝑁̂ =
(∣𝐻12∣2𝑃1𝑐 + 𝜎2

2)(∣𝐻13∣2(𝑃1𝑑 + 𝑃1𝑐) + 𝜎2
2)

∣𝐻23∣2𝑃2𝑐
(24)

Now, we calculate the two terms that represent the
decode-and-forward bound. Given that 𝑌2 = 𝐻12𝑋1 +
𝑛2,

𝐼(𝑈1𝑑;𝑌2∣𝑈2𝑑) = ℎ(𝑌2∣𝑈2𝑑)− ℎ(𝑌2∣𝑈1𝑑, 𝑈2𝑑)

= ℎ(𝑈1𝑑 + 𝑈1𝑐)− ℎ(𝑈1𝑐)

=
1

2
log

(
1 +

∣𝐻12∣2𝑃1𝑑

∣𝐻12∣2𝑃1𝑐 + 𝜎2
2

)
(25)

The other term in the decode-and-forward bound is
𝐼(𝑈1𝑑 + 𝛽𝑢2𝑑, 𝑈2𝑑;𝑌3). Given that 𝑌3 = 𝐻13𝑋1 +
𝐻23𝑋2 + 𝑛3, this term can be obtained by:

𝐼(𝑈1𝑑 + 𝛽𝑈2𝑑, 𝑈2𝑑;𝑌3) = ℎ(𝑌3)− ℎ(𝑌3∣𝑈1𝑑, 𝑈2𝑑)

=
1

2
log

(
∣𝐻12∣2𝑃1 + ∣𝐻23∣2𝑃2 + 𝜎2

3

∣𝐻13∣2𝑃1𝑐 + ∣𝐻23∣2𝑃2𝑐 + 𝜎2
3

)
(26)

After some mathematical manipulations,

𝐼(𝑈1𝑑 + 𝛽𝑈2𝑑, 𝑈2𝑑; 𝑦3) =

1

2
log

(
1 +

(𝑃1𝑑 + 𝛽2𝑃2𝑐)∣𝐻13∣2
𝜎2
3

+
𝑃2𝑑∣𝐻23∣2

𝜎2
3
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√
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𝜎4
3

)}
(27)

The rate of the compress-and-forward part is given by

𝐼(𝑋1;𝑌2, 𝑌3∣𝑋2,𝑈1𝑑) = ℎ(𝑌2, 𝑌3∣𝑋2, 𝑈1𝑑)

− ℎ(𝑌2, 𝑌3∣𝑋2, 𝑈1𝑑, 𝑋1) (28)
where 𝑈1𝑑 is in the given expression because the as-
sumption of decoding the decode-and-forward part first.
By treating [𝑌2𝑌3] as a random vector, from the covari-
ance matrix, the entropies in (28) can be calculating and
give

𝐼(𝑋1;𝑌2, 𝑌3∣𝑋2, 𝑈1𝑑) =

1

2
log

( (∣𝐻12∣2𝑃1𝑐 + 𝜎2
3 + 𝑁̂)(∣𝐻13∣2𝑃1𝑐 + 𝜎2

3)

(𝜎2
3 + 𝑁̂)𝜎2

3

+
(∣𝐻12∣2∣𝐻13∣2)𝑃 2

1𝑐

(𝜎2
3 + 𝑁̂)𝜎2

3

)
(29)

By combining these mutual informations and substi-
tuting in the rate described in (6), we obtain the rate in
Theorem 2.
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